
Security Assessment

RapChain-Audit
CertiK Assessed on Jan 19th, 2024

Executive Summary

Highlighted Centralization Risks

Vulnerability Summary

1 Critical 1 Acknowledged

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

3 Major 2 Resolved, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

2 Medium 1 Resolved, 1 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

8 Minor 6 Resolved, 2 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

1 Informational 1 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY RAPCHAIN-AUDIT

CertiK Assessed on Jan 19th, 2024

RapChain-Audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Binance Smart Chain

(BSC) | Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 01/19/2024

KEY COMPONENTS

N/A

CODEBASE
https://github.com/OurHappy/rapchain-

prototype/tree/aa0665ef503fdca40ed9669b5cd7b10cc1ce6b90

View All in Codebase Page

Withdraws can be disabled Privileged role can mint tokens

15
Total Findings

10
Resolved

0
Mitigated

0
Partially Resolved

5
Acknowledged

0
Declined

https://github.com/OurHappy/rapchain-prototype/tree/aa0665ef503fdca40ed9669b5cd7b10cc1ce6b90

TABLE OF CONTENTS RAPCHAIN-AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

RCO-19 : Potential honeypot risk and manipulation of winning result

OHB-03 : Centralization Related Risks

RCO-06 : `pause/unpause` functionalities not implemented

RCO-07 : The restarted game cannot be ended

RCO-08 : Block stuffing attacks

RCO-15 : Potential Signature Replay Attack

OHB-02 : Missing Zero Address Validation

RCO-04 : Potential denial of service caused by buyer

RCO-05 : Check for "claimEnable" flag when referrer withdraws reward

RCO-10 : Potential Divide by Zero

RCO-12 : The `RapChain` contract can be reinitialized

RCO-13 : Potential malformed NFT token ID

RCO-16 : Check-Effects-Interactions Pattern Violation

RCO-18 : The `referrer` could be any address

RCO-17 : Inconsistent Comment and Code

Optimizations

RCO-01 : Variables That Could Be Declared as Immutable

RCO-02 : Inefficient Memory Parameter

RCO-14 : Unused `airdropAddr`

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS RAPCHAIN-AUDIT

CODEBASE RAPCHAIN-AUDIT

Repository

https://github.com/OurHappy/rapchain-prototype/tree/aa0665ef503fdca40ed9669b5cd7b10cc1ce6b90

CODEBASE RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/tree/aa0665ef503fdca40ed9669b5cd7b10cc1ce6b90

AUDIT SCOPE RAPCHAIN-AUDIT

2 files audited 2 files with Acknowledged findings

ID Repo File SHA256 Checksum

RCO
OurHappy/rapchain-

prototype
contracts/RapChain.sol

28eb0602b0c5cbab5bb7833e17809d5b9a

042c4c8e87fa3604a2a2525acb255c

RNF
OurHappy/rapchain-

prototype
contracts/RapNFT.sol

f40e288ba3d2d17893ef7e47d25b3dd51aff

a4d74c57cb82dbbea681a3a6d2da

AUDIT SCOPE RAPCHAIN-AUDIT

APPROACH & METHODS RAPCHAIN-AUDIT

This report has been prepared for RapChain to discover issues and vulnerabilities in the source code of the RapChain-Audit

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS RAPCHAIN-AUDIT

FINDINGS RAPCHAIN-AUDIT

This report has been prepared to discover issues and vulnerabilities for RapChain-Audit. Through this audit, we have

uncovered 15 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

RCO-19
Potential Honeypot Risk And Manipulation

Of Winning Result
Centralization Critical Acknowledged

OHB-03 Centralization Related Risks Centralization Major Acknowledged

RCO-06
pause/unpause Functionalities Not

Implemented
Logical Issue Major Resolved

RCO-07 The Restarted Game Cannot Be Ended Logical Issue Major Resolved

RCO-08 Block Stuffing Attacks Concurrency Medium Acknowledged

RCO-15 Potential Signature Replay Attack Access Control Medium Resolved

OHB-02 Missing Zero Address Validation Volatile Code Minor Resolved

RCO-04 Potential Denial Of Service Caused By Buyer
Denial of

Service
Minor Acknowledged

RCO-05
Check For "ClaimEnable" Flag When Referrer

Withdraws Reward
Logical Issue Minor Resolved

RCO-10 Potential Divide By Zero Logical Issue Minor Resolved

RCO-12 The RapChain Contract Can Be Reinitialized Logical Issue Minor Acknowledged

FINDINGS RAPCHAIN-AUDIT

15
Total Findings

1
Critical

3
Major

2
Medium

8
Minor

1
Informational

ID Title Category Severity Status

RCO-13 Potential Malformed NFT Token ID Logical Issue Minor Resolved

RCO-16 Check-Effects-Interactions Pattern Violation Concurrency Minor Resolved

RCO-18 The referrer Could Be Any Address Access Control Minor Resolved

RCO-17 Inconsistent Comment And Code Inconsistency Informational Resolved

FINDINGS RAPCHAIN-AUDIT

RCO-19 POTENTIAL HONEYPOT RISK AND MANIPULATION OF
WINNING RESULT

Category Severity Location Status

Centralization Critical contracts/RapChain.sol: 375 Acknowledged

Description

In the contract RapChain the role signer has authority to sign a signature for a specific chain id and len . This

signature is then used by users when calling the buy() function to participate in the game as a potential winner.

Any compromise to the signer account may allow the hacker to take advantage of this authority and sign a signature for

themselves to join the game, and then end the game after 30 minutes, thus ensuring they become the winner and claim

rewards.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

RCO-19 RAPCHAIN-AUDIT

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[RapChain Team, 01/16/2024]:

1. Core Protocol Design: The reliance on server-generated signatures for verifying AI-generated content is a

fundamental aspect of the RapChain protocol. This design is crucial for integrating advanced AI technology and

ensuring the uniqueness and authenticity of the content used within the protocol. The offchain AI model plays a vital

role in content generation, and the server signature acts as a bridge between offchain innovation and onchain trust.

2. Continuity of Operation: In the event of a signer key compromise, the security architecture of RapChain allows for the

uninterrupted generation of AI-generated signatures. The protocol is designed to maintain operational resilience,

ensuring that the generation of AI content and its corresponding signatures continues seamlessly. This design choice

reflects a balance between innovation, user experience, and risk management.

[CertiK, 01/16/2024]:

It should be noted that the centralization risk issue still exists. CertiK strongly encourages the project team to periodically

revisit the private key security management of all addresses related to centralized roles.

RCO-19 RAPCHAIN-AUDIT

OHB-03 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major
contracts/RapChain.sol: 122, 134, 145, 163; contracts/RapN

FT.sol: 29, 37, 54
Acknowledged

Description

In the contract RapChain the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and

change signer to manipulate the game winner.

change communityAddr and nextGameAddr to receive funds.

start or end the game.

pause claiming rewards.

OHB-03 RAPCHAIN-AUDIT

Function

State Variables

External Calls

Authenticated Role

Function

State Variables

Function
State Variables

Function

State Variables

Internal Callsend

gameEnable

claimEnable

payable.transfer

settle

_owner

start

initialize

setSigner

gameEnable

endTime

airdropAddr

communityAddr

signer

nextGameAddr

signer

In the contract RapNFT the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and set minter and baseUri.

OHB-03 RAPCHAIN-AUDIT

Function State Variables

Function State Variables

Authenticated Role setBaseUri baseUri

setMinter minter

_owner

In the contract RapNFT the role minter has authority over the functions shown in the diagram below. Any compromise to

the minter account may allow the hacker to take advantage of this authority and mint RapNFT tokens.

Function

State Variables

Internal Calls
Authenticated Role

mint

exists

_mint
minter

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

OHB-03 RAPCHAIN-AUDIT

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[RapChain Team, 01/16/2024]:

1. Core Protocol Design: The reliance on server-generated signatures for verifying AI-generated content is a

fundamental aspect of the RapChain protocol. This design is crucial for integrating advanced AI technology and

ensuring the uniqueness and authenticity of the content used within the protocol. The offchain AI model plays a vital

role in content generation, and the server signature acts as a bridge between offchain innovation and onchain trust.

2. Continuity of Operation: In the event of a signer key compromise, the security architecture of RapChain allows for the

uninterrupted generation of AI-generated signatures. The protocol is designed to maintain operational resilience,

ensuring that the generation of AI content and its corresponding signatures continues seamlessly. This design choice

reflects a balance between innovation, user experience, and risk management.

[CertiK, 01/16/2024]:

OHB-03 RAPCHAIN-AUDIT

It should be noted that the centralization risk issue still exists. CertiK strongly encourages the project team to periodically

revisit the private key security management of all addresses related to centralized roles.

OHB-03 RAPCHAIN-AUDIT

RCO-06 pause/unpause FUNCTIONALITIES NOT IMPLEMENTED

Category Severity Location Status

Logical Issue Major contracts/RapChain.sol: 38~39 Resolved

Description

The contract inherits Pausable and uses extensively the whenNotPaused modifier to prevent many functions from being

called if the contract is paused. However, the contract does not implement any function allowing to set _paused as true.

Therefore, the contract cannot be paused.

Recommendation

We recommend implementing functions allowing to pause and unpause the contract.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-06 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

RCO-07 THE RESTARTED GAME CANNOT BE ENDED

Category Severity Location Status

Logical Issue Major contracts/RapChain.sol: 168, 172 Resolved

Description

The end() function intended to conclude the current game session. It performs the following actions:

1. Sets gameEnable to false to disable the game.

2. Sets claimEnable to true to allow players to claim their rewards.

3. Calculate and distribute rewards, which transfer 10% of the contract's funds to the nextGameAddr .

However, if the game is restarted by the owner, the claimEnable flag remains set to true , and due to the existing check

within the end() function:

168 require(claimEnable == false, "ended");

The owner is unable to execute the end() function again to properly conclude the game. This results in a situation where

the funds are locked within the contract, and players are unable to claim their rewards.

Proof of Concept

RCO-07 RAPCHAIN-AUDIT

contract ContractTest is Test {

 address public alice = makeAddr("alice");

 RapNFT nft;

 RapChain rap;

 address signer = vm.addr(1);

 receive() payable external {}

 function setUp() public {

 nft = new RapNFT(address(this),"","");

 rap = new RapChain(address(this), address(nft));

 rap.initialize(address(this), address(this), address(this), signer);

 nft.setMinter(address(rap));

 vm.deal(alice, 1 ether);

 }

 function testRestart() public {

 rap.start();

 uint256 one = 1;

 bytes32 hash =

MessageHashUtils.toEthSignedMessageHash(keccak256(abi.encodePacked(one, one)));

 (uint8 v, bytes32 r, bytes32 s) = vm.sign(1, hash);

 bytes memory signature = abi.encodePacked(r, s, v);

 vm.prank(alice);

 rap.buy{value: 1e18 / 2000}(signature, 1, 1, address(0));

 vm.warp(block.timestamp + 1.1 days);

 rap.end();

 // restart

 rap.start();

 vm.warp(block.timestamp + 1.1 days);

 rap.end();

 }

}

Test result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 4.62ms

Ran 1 test suites: 0 tests passed, 1 failed, 0 skipped (1 total tests)

Failing tests:

Encountered 1 failing test in test/Contract.t.sol:ContractTest

[FAIL. Reason: ended] testRestart() (gas: 460142)

Encountered a total of 1 failing tests, 0 tests succeeded

Recommendation

RCO-07 RAPCHAIN-AUDIT

Consider adding a check in the start() function to ensure the game cannot be restarted.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-07 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

RCO-08 BLOCK STUFFING ATTACKS

Category Severity Location Status

Concurrency Medium contracts/RapChain.sol: 363 Acknowledged

Description

The smart contract contains a game mechanism where the endTime is extended by 30 minutes (endTime += 30 * 60)

each time a player purchases a rap chain. The game is set to end when block.timestamp exceeds endTime . At this point,

no further purchases can be made, and the last buyer is declared the winner.

However, this mechanism is susceptible to a block stuffing attack. An attacker can exploit this by issuing a series of

transactions with higher gas fees to fill the blocks' gas limits, effectively preventing the buy() function from being executed

by other players. If the attacker manages to monopolize block space for the subsequent 30 minutes, they can ensure they

are the last buyer and thus guarantee their victory.

If the winner's reward is greater than the cost, the attack is profitable.

Recommendation

To mitigate this risk, consider implementing a randomized or a fixed grace period after the endTime has been reached,

during which transactions can still be processed to determine the final winner. Additionally, a commit-reveal scheme could be

employed to prevent attackers from being certain of the game's outcome, hence disincentivizing block stuffing.

Alleviation

[RapChain Team, 01/16/2024]:

1. Game Purchase Cap: The RapChain game is designed with a cap of 100,000 purchases. This cap significantly limits

the potential profit from winning the game, making it economically unfeasible for an attacker to sustain a block

stuffing attack for 30 minutes. The cost of monopolizing block space for such a duration would outweigh the potential

rewards from winning the game.

2. Economic Disincentive for Attackers: The financial implication of executing a block stuffing attack, combined with the

capped reward structure, serves as a strong disincentive for potential attackers. The cost-benefit analysis does not

favor the attacker, thereby reducing the likelihood of such an attack being attempted.

3. Robust Game Design: The RapChain game's design, including the purchase cap, reflects a balance between an

engaging user experience and security considerations. This cap is an integral part of the game's strategy,

encouraging fair play and competition among participants.

RCO-08 RAPCHAIN-AUDIT

RCO-15 POTENTIAL SIGNATURE REPLAY ATTACK

Category Severity Location Status

Access Control Medium contracts/RapChain.sol: 379 Resolved

Description

The signed messages do not contain a domain separator. Without the domain separator allows the signature to be reused on

other contracts or chains.

Scenario

1. The RapChain contract is deployed to addrA, and the signer issues signatures for players.

2. The game in addrA is ended.

3. The project owner deploys the RapChain contract to addrB with the same signer.

4. The signature that has been used for addrA can be reused in addrB.

Recommendation

Consider adding address(this) and block.chainid to the message, and using a different signer wallet if the contract is

deployed multiple times.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-15 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

OHB-02 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

contracts/RapChain.sol: 112, 123, 124, 125, 126, 135; contracts/RapNF

T.sol: 30
Resolved

Description

Addresses are not validated before assignment or external calls, potentially allowing the use of zero addresses and leading

to unexpected behavior or vulnerabilities. For example, transferring tokens to a zero address can result in a permanent loss

of those tokens.

112 rapNFT = _rapNFT;

_rapNFT is not zero-checked before being used.

123 communityAddr = _community;

_community is not zero-checked before being used.

124 airdropAddr = _airdrop;

_airdrop is not zero-checked before being used.

125 nextGameAddr = _nextGame;

_nextGame is not zero-checked before being used.

30 minter = _minter;

_minter is not zero-checked before being used.

Recommendation

OHB-02 RAPCHAIN-AUDIT

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

OHB-02 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

RCO-04 POTENTIAL DENIAL OF SERVICE CAUSED BY BUYER

Category Severity Location Status

Denial of Service Minor contracts/RapChain.sol: 324 Acknowledged

Description

The distribute() function checks that the input parameter len is exactly one more than the current chain.len :

323 // Check if the length of the chain is valid

324 require(len == chain.len + 1, "len");

The len is used in conjunction with a chain ID (id) to create a payload that is signed by a signer wallet. This signature is

necessary for a buyer to proceed with purchasing a rap chain. However, if a buyer decides not to purchase after receiving

the signature, other buyers are blocked from proceeding because they must wait for the current len to be consumed,

potentially leading to a Denial of Service (DoS) condition.

Recommendation

Please confirm the approach of sharing the purchase signature and avoid DoS.

Alleviation

[RapChain Team, 01/16/2024]:

1. Non-blocking Signature Mechanism: The design of the RapChain protocol's signature mechanism allows for the

generation of appropriate signatures using the same len value to overwrite previous ones. This means that even if a

buyer chooses not to use their signature, it does not block other buyers from proceeding with their purchases.

2. Competitive Purchase Design: The mechanism's design is intended to foster competition among users to buy at a

given len. This competitive aspect is a core feature of the game, encouraging active participation and engagement

from buyers.

3. Operational Resilience: The protocol's ability to generate new signatures for the same len value ensures operational

continuity and resilience. This design choice mitigates the risk of a single buyer's inaction affecting the overall

functionality of the game.

RCO-04 RAPCHAIN-AUDIT

RCO-05 CHECK FOR "CLAIMENABLE" FLAG WHEN REFERRER
WITHDRAWS REWARD

Category Severity Location Status

Logical Issue Minor contracts/RapChain.sol: 282 Resolved

Description

The claimEnable flag intended to control the ability of users to claim rewards. This flag acts as a switch to enable or

disable the reward claiming functionality. However, the claimReferrer() function does not check the status of

claimEnable before proceeding with the reward claim process.

Recommendation

Check the claimEnable flag in the claimReferrer() function.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-05 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

RCO-10 POTENTIAL DIVIDE BY ZERO

Category Severity Location Status

Logical Issue Minor contracts/RapChain.sol: 186 Resolved

Description

If the game does not have any participants, the count could be zero, performing division by zero would raise an error and

revert the transaction.

186 chain.pool += sum / count;

The expression sum / count may divide by zero.

Recommendation

It is recommended to either reformulate the divisor expression, or to use conditionals or require statements to rule out the

possibility of a divide-by-zero.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-10 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

RCO-12 THE RapChain CONTRACT CAN BE REINITIALIZED

Category Severity Location Status

Logical Issue Minor contracts/RapChain.sol: 122 Acknowledged

Description

The initialize() function is intended to set initial state variables during the contract's deployment. However, this function

lacks the necessary modifiers or state checks to prevent it from being executed more than once.

Recommendation

Consider adding a check to ensure the initialize() function can only be executed once.

Alleviation

[RapChain Team, 01/16/2024]: The team acknowledged the finding and decided not to change the current codebase.

RCO-12 RAPCHAIN-AUDIT

RCO-13 POTENTIAL MALFORMED NFT TOKEN ID

Category Severity Location Status

Logical Issue Minor contracts/RapChain.sol: 388~395 Resolved

Description

The NFT ID is composed of two parts:

chain ID: nftId / 100000

len: nftId % 100000

If the len value exceeds 100,000, the chain ID and len value parsed from the generated NFT ID are incorrect.

Scenario

If id = 1 and len = 100001 , genNFTId() returns "200001", indicating that the chain ID is 2 and the len is 1.

Recommendation

Consider using a larger denominator, such as e18.

Alleviation

[RapChain Team, 01/19/2024]: The team heeded the advice and resolved the issue in commit

78fbd18644d38ab9d968fd0aa1c2c4d113b10058.

RCO-13 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/78fbd18644d38ab9d968fd0aa1c2c4d113b10058

RCO-16 CHECK-EFFECTS-INTERACTIONS PATTERN VIOLATION

Category Severity Location Status

Concurrency Minor contracts/RapChain.sol: 285, 354 Resolved

Description

This Checks-Effects-Interactions Pattern is a best practice for writing secure smart contracts that involves performing all state

changes before making any external function calls.

285 payable(msg.sender).transfer(amount);

286 totalWithdrawal[msg.sender] += amount;

287 referrers[msg.sender] = 0;

354 IRapNFT(rapNFT).mint(msg.sender, nftId);

355

356 // Set the rewardPerBuy for the NFT

357 debts[nftId] = rewardPerBuy;

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts to prevent

unexpected behavior.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-16 RAPCHAIN-AUDIT

https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

RCO-18 THE referrer COULD BE ANY ADDRESS

Category Severity Location Status

Access Control Minor contracts/RapChain.sol: 335~336 Resolved

Description

The function for buying a rap chain allows players to specify a referrer address. This referrer is then awarded a

commission of 7% of the buy-in amount. The current implementation does not require the referrer to be a pre-existing

participant within the system. Additionally, any address can be set as a referrer , provided it is not the same as

msg.sender .

Recommendation

Consider adding restrictions to the referrer address to prevent users from using another wallet as the referrer to pay less.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-18 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

RCO-17 INCONSISTENT COMMENT AND CODE

Category Severity Location Status

Inconsistency Informational contracts/RapChain.sol: 224 Resolved

Description

The comment 'count how many chains are the longest.' in the settle() function does not reflect the code logic.

Recommendation

We recommend checking the current implementation and correcting the inconsistency.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-17 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

OPTIMIZATIONS RAPCHAIN-AUDIT

ID Title Category Severity Status

RCO-01
Variables That Could Be Declared As

Immutable
Gas Optimization Optimization Resolved

RCO-02 Inefficient Memory Parameter Inconsistency Optimization Resolved

RCO-14 Unused airdropAddr
Coding Style, Gas

Optimization
Optimization Resolved

OPTIMIZATIONS RAPCHAIN-AUDIT

https://acc.audit.certikpowered.info/project/a8c81800-aacc-11ee-a524-b50391908463/report/new?fid=1704848879858
https://acc.audit.certikpowered.info/project/a8c81800-aacc-11ee-a524-b50391908463/report/new?fid=1704848945401
https://acc.audit.certikpowered.info/project/a8c81800-aacc-11ee-a524-b50391908463/report/new?fid=1704869502412

RCO-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas Optimization Optimization contracts/RapChain.sol: 67 Resolved

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-01 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

RCO-02 INEFFICIENT MEMORY PARAMETER

Category Severity Location Status

Inconsistency Optimization contracts/RapChain.sol: 375 Resolved

Description

One or more parameters with memory data location are never modified in their functions and those functions are never

called internally within the contract. Thus, their data location can be changed to calldata to avoid the gas consumption

copying from calldata to memory.

375 function buy(bytes memory signature, uint id, uint len, address referrer)

payable nonReentrant whenNotPaused public {

buy has memory location parameters: signature .

Recommendation

We recommend changing the parameter's data location to calldata to save gas.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-02 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

RCO-14 UNUSED airdropAddr

Category Severity Location Status

Coding Style, Gas Optimization Optimization contracts/RapChain.sol: 64 Resolved

Description

The state variable airdropAddr is initialized within the initialize() function. This variable is also subjected to a non-

zero check within the start() function. However, it is not utilized anywhere within the contract's functional operations.

Recommendation

If airdropAddr is intended to be used in the game logic and contributes to the contract's intended functionality, it is

recommended to implement the necessary logic that utilizes this state variable. If airdropAddr is a remnant from previous

versions of the contract or is not needed for the contract's functionality, it is recommended to remove the variable and any

associated checks to reduce gas costs.

Alleviation

[RapChain Team, 01/16/2024]: The team heeded the advice and resolved the issue in commit

c93e31b168771d74d9f914f0e6d2f14794856351.

RCO-14 RAPCHAIN-AUDIT

https://github.com/OurHappy/rapchain-prototype/commit/c93e31b168771d74d9f914f0e6d2f14794856351

FORMAL VERIFICATION RAPCHAIN-AUDIT

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of Standard ERC-721 Properties

Properties for standard ERC-721 contracts (note that safeTransferFrom function is not included in the verification):

Property Name Title

erc721common-approve-revert-invalid-token approve Fails For Calls with Invalid Tokens

erc721common-approve-revert-not-allowed approve Prevents Unpermitted Approvals

erc721common-approve-set-correct approve Sets Approval

erc721common-approve-succeed-normal approve Returns for Valid Inputs

erc721common-setapprovalforall-set-correct setApprovalForAll Approves Operator

erc721common-isapprovedforall-correct isApprovedForAll Returns Correct Approvals

erc721common-isapprovedforall-succeed isApprovedForAll Always Succeeds

erc721common-isapprovedforall-change-state isApprovedForAll Does Not Change the Contract's State

erc721common-getapproved-revert-zero getApproved Fails on Invalid Tokens

erc721common-getapproved-correct-value getApproved Returns Correct Approved Address

erc721common-getapproved-succeed-normal getApproved Succeeds For Valid Tokens

erc721common-getapproved-change-state getApproved Does Not Change the Contract's State

erc721common-ownerof-revert ownerOf Fails On Invalid Tokens

erc721common-ownerof-correct-owner ownerOf Returns the Correct Owner

erc721common-ownerof-succeed-normal ownerOf Succeeds For Valid Tokens

FORMAL VERIFICATION RAPCHAIN-AUDIT

Property Name Title

erc721common-ownerof-no-change-state ownerOf Does Not Change the Contract's State

erc721common-balanceof-revert balanceOf Fails on the Zero Address

erc721common-balanceof-correct-count balanceOf Returns the Correct Value

erc721common-balanceof-succeed-normal balanceOf Succeeds on Valid Inputs

erc721common-balanceof-no-change-state balanceOf Does Not Change the Contract's State

erc721common-supportsinterface-correct-erc721 supportsInterface Signals Support for ERC721

erc165-supportsinterface-correct-false supportsInterface Returns False for Id 0xffffffff

erc165-supportsinterface-correct-erc165 supportsInterface Signals Support for ERC165

erc165-supportsinterface-succeed-always supportsInterface Always Succeeds

erc721common-transferfrom-revert-exceed-approval transferFrom Fails for Token Transfers without Approval

erc721common-transferfrom-revert-not-owned transferFrom Fails if From Is Not Token Owner

erc165-supportsinterface-no-change-state supportsInterface Does Not Change the Contract's State

erc721common-transferfrom-revert-invalid transferFrom Fails for Invalid Tokens

erc721common-transferfrom-correct-state-approval transferFrom Has Expected Approval Changes

erc721common-transferfrom-correct-state-owner transferFrom Has Expected Ownership Changes

erc721common-transferfrom-correct-state-balance
transferFrom Keeps Balances Constant Except for From

and To

erc721common-transferfrom-revert-zero-argument
transferFrom Fails for Transfers with Zero Address

Arguments

erc721common-transferfrom-correct-owner-to transferFrom Transfers Ownership

erc721common-transferfrom-correct-approval transferFrom Updates the Approval Correctly

erc721common-transferfrom-correct-increase transferFrom Transfers the Complete Token in Transfers

erc721-transferfrom-succeed-normal transferFrom Succeeds on Valid Inputs

erc721common-transferfrom-correct-balance transferFrom Sum of Balances is Constant

FORMAL VERIFICATION RAPCHAIN-AUDIT

Property Name Title

erc721common-setapprovalforall-multiple setApprovalForAll Can Set Multiple Operators

erc721common-setapprovalforall-change-state setApprovalForAll Has No Unexpected State Changes

erc721common-setapprovalforall-succeed-normal setApprovalForAll Returns for Valid Inputs

erc721common-approve-change-state approve Has No Unexpected State Changes

erc721common-supportsinterface-metadata
supportsInterface Signals that ERC721Metadata is

Implemented

Verification Results

In the remainder of this section, we list all contracts where formal verification of at least one property was not successful.

There are several reasons why this could happen:

False: The property is violated by the project.

Inconclusive: The proof engine cannot prove or disprove the property due to timeouts or exceptions.

Inapplicable: The property does not apply to the project.

Detailed Results For Contract RapNFT (contracts/RapNFT.sol) In Commit
aa0665ef503fdca40ed9669b5cd7b10cc1ce6b90

Verification of Standard ERC-721 Properties

Detailed Results for Function approve

Property Name Final Result Remarks

erc721common-approve-revert-invalid-token Inconclusive

erc721common-approve-revert-not-allowed Inconclusive

erc721common-approve-set-correct Inconclusive

erc721common-approve-succeed-normal Inconclusive

erc721common-approve-change-state Inconclusive

FORMAL VERIFICATION RAPCHAIN-AUDIT

Detailed Results for Function setApprovalForAll

Property Name Final Result Remarks

erc721common-setapprovalforall-set-correct True

erc721common-setapprovalforall-multiple True

erc721common-setapprovalforall-change-state Inconclusive

erc721common-setapprovalforall-succeed-normal True

Detailed Results for Function isApprovedForAll

Property Name Final Result Remarks

erc721common-isapprovedforall-correct True

erc721common-isapprovedforall-succeed True

erc721common-isapprovedforall-change-state True

Detailed Results for Function getApproved

Property Name Final Result Remarks

erc721common-getapproved-revert-zero Inconclusive

erc721common-getapproved-correct-value Inconclusive

erc721common-getapproved-succeed-normal Inconclusive

erc721common-getapproved-change-state True

Detailed Results for Function ownerOf

Property Name Final Result Remarks

erc721common-ownerof-revert Inconclusive

erc721common-ownerof-correct-owner Inconclusive

erc721common-ownerof-succeed-normal Inconclusive

erc721common-ownerof-no-change-state True

FORMAL VERIFICATION RAPCHAIN-AUDIT

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc721common-balanceof-revert True

erc721common-balanceof-correct-count True

erc721common-balanceof-succeed-normal True

erc721common-balanceof-no-change-state True

Detailed Results for Function supportsInterface

Property Name Final Result Remarks

erc721common-supportsinterface-correct-erc721 True

erc165-supportsinterface-correct-false True

erc165-supportsinterface-correct-erc165 True

erc165-supportsinterface-succeed-always True

erc165-supportsinterface-no-change-state True

erc721common-supportsinterface-metadata True

FORMAL VERIFICATION RAPCHAIN-AUDIT

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc721common-transferfrom-revert-exceed-approval Inconclusive

erc721common-transferfrom-revert-not-owned Inconclusive

erc721common-transferfrom-revert-invalid Inconclusive

erc721common-transferfrom-correct-state-approval Inconclusive

erc721common-transferfrom-correct-state-owner Inconclusive

erc721common-transferfrom-correct-state-balance True

erc721common-transferfrom-revert-zero-argument Inconclusive

erc721common-transferfrom-correct-owner-to Inconclusive

erc721common-transferfrom-correct-approval Inconclusive

erc721common-transferfrom-correct-increase Inconclusive

erc721-transferfrom-succeed-normal Inconclusive

erc721common-transferfrom-correct-balance True

FORMAL VERIFICATION RAPCHAIN-AUDIT

APPENDIX RAPCHAIN-AUDIT

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Denial of

Service

Denial of Service findings indicate that an attacker may prevent the program from operating correctly

or responding to legitimate requests.

Concurrency
Concurrency findings are about issues that cause unexpected or unsafe interleaving of code

executions.

Access Control Access Control findings are about security vulnerabilities that make protected assets unsafe.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

APPENDIX RAPCHAIN-AUDIT

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-721 Properties

Properties related to function approve

erc721common-approve-change-state

All calls of the form approve(to, tokenId) must only update the allowance mapping according to a valid token tokenId

and the address to , and incur no other state changes.

Specification:

assignable getApproved(tokenId);

APPENDIX RAPCHAIN-AUDIT

erc721common-approve-revert-invalid-token

All calls of the form approve(to, tokenId) must fail for an invalid token.

Specification:

reverts_when ownerOf(tokenId) == address(0);

erc721common-approve-revert-not-allowed

All calls of the form approve(to, tokenId) must fail if the message sender is not permitted to access token tokenId .

Specification:

reverts_when (ownerOf(tokenId) != msg.sender) &&

!isApprovedForAll(ownerOf(tokenId),msg.sender);

erc721common-approve-set-correct

Any returning call of the form approve(to, tokenId) must approve the address to for token tokenId .

Specification:

requires ownerOf(tokenId) != address(0);

requires (ownerOf(tokenId) == msg.sender)||

isApprovedForAll(ownerOf(tokenId),msg.sender);

ensures getApproved(tokenId) == to;

erc721common-approve-succeed-normal

All calls of the form approve(to, tokenId) must return if

the sender is the owner or an authorized operator of the owner

the token tokenId is valid and

the execution does not run out of gas.

Specification:

requires ownerOf(tokenId) != address(0);

requires ownerOf(tokenId) != to;

requires (ownerOf(tokenId) == msg.sender) ||

isApprovedForAll(ownerOf(tokenId),msg.sender);

ensures true;

reverts_only_when false;

Properties related to function setApprovalForAll

APPENDIX RAPCHAIN-AUDIT

erc721common-setapprovalforall-change-state

All calls of the form setApprovalForAll(operator, approved) must only update the approval mapping according to the

message sender, the address operator and the Boolean value approved but incur no other state changes.

Specification:

assignable isApprovedForAll(msg.sender,operator);

erc721common-setapprovalforall-multiple

Calls of the form setApprovalForAll(operator, approved) must be able to set multiple operators for the tokens of the

message sender.

Specification:

requires approved;

ensures isApprovedForAll(msg.sender,operator);

ensures (\forall address op1 |(op1 != address(0)) &&

\old(isApprovedForAll(msg.sender,op1)) :: isApprovedForAll(msg.sender,op1));

erc721common-setapprovalforall-set-correct

All non-reverting calls of the form setApprovalForAll(operator, approved) must set the approval of a non-zero address

operator according to the Boolean value approved .

Specification:

requires operator != address(0);

ensures isApprovedForAll(msg.sender,operator) == approved;

erc721common-setapprovalforall-succeed-normal

Calls of the form setApprovalForAll(operator, approved) must return if

the message sender is not the operator ,

operator is not the zero address and

the execution does not run out of gas.

Specification:

requires msg.sender != operator;

requires operator != address(0);

ensures true;

reverts_only_when false;

APPENDIX RAPCHAIN-AUDIT

Properties related to function isApprovedForAll

erc721common-isapprovedforall-change-state

Function isApprovedForAll does not change any of the contract's state variables.

Specification:

assignable \nothing;

erc721common-isapprovedforall-correct

Invocations of isApprovedForAll(owner, operator) must return whether a non-zero address operator is approved for

tokens of a non-zero address owner , or return false.

Specification:

requires owner != address(0);

requires operator != address(0);

ensures \result == isApprovedForAll(owner,operator);

erc721common-isapprovedforall-succeed

Function isApprovedForAll does always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function getApproved

erc721common-getapproved-change-state

Function getApproved must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc721common-getapproved-correct-value

Invocations of getApproved(token) must return the approved address of a valid token .

Specification:

ensures (\result == \old(getApproved(tokenId))) || (\result == address(0));

APPENDIX RAPCHAIN-AUDIT

erc721common-getapproved-revert-zero

Invocations of getApproved(token) with an invalid token must fail.

Specification:

reverts_when ownerOf(tokenId) == address(0);

erc721common-getapproved-succeed-normal

Function getApproved must always succeed for valid tokens, assuming that its execution does not run out of gas.

Specification:

requires ownerOf(tokenId) != address(0);

ensures true;

reverts_only_when false;

Properties related to function ownerOf

erc721common-ownerof-correct-owner

Invocations of ownerOf(token) must return the owner for a valid token token that is held in the contract's owner mapping.

Specification:

requires ownerOf(tokenId) != address(0);

ensures \result == \old(ownerOf(tokenId));

erc721common-ownerof-no-change-state

Function ownerOf must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc721common-ownerof-revert

Invocations of ownerOf(token) must fail for an invalid token.

Specification:

reverts_when ownerOf(tokenId) == address(0);

erc721common-ownerof-succeed-normal

APPENDIX RAPCHAIN-AUDIT

Function ownerOf(token) must always succeed for valid tokens if it does not run out of gas.

Specification:

requires ownerOf(tokenId) != address(0);

ensures true;

reverts_only_when false;

Properties related to function balanceOf

erc721common-balanceof-correct-count

Invocations of balanceOf(owner) must return the value that is held in the balance mapping for address owner .

Specification:

ensures \result == \old(balanceOf(owner));

erc721common-balanceof-no-change-state

Function balanceOf must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc721common-balanceof-revert

Invocations of balanceOf(owner) must fail if the address owner is the zero address.

Specification:

reverts_when owner == address(0);

erc721common-balanceof-succeed-normal

All invocations of balanceOf(owner) must succeed if the address owner is not zero and it does not run out of gas.

Specification:

requires owner != address(0);

ensures true;

reverts_only_when false;

Properties related to function supportsInterface

APPENDIX RAPCHAIN-AUDIT

erc165-supportsinterface-correct-erc165

Invocations of supportsInterface(id) must signal that the interface ERC165 is implemented.

Specification:

requires interfaceId == 0x01ffc9a7;

ensures \result;

erc165-supportsinterface-correct-false

Invocations of supportsInterface(id) with id 0xffffffff must return false .

Specification:

requires interfaceId == 0xffffffff;

ensures !\result;

erc165-supportsinterface-no-change-state

Function supportsInterface must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc165-supportsinterface-succeed-always

Function supportsInterface must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

erc721common-supportsinterface-correct-erc721

Invocations of supportsInterface(id) must signal that the interface ERC721 is implemented.

Specification:

requires interfaceId == 0x80ac58cd;

ensures esult;

erc721common-supportsinterface-metadata

A call of supportsInterface(interfaceId) with the interface id of ERC721Metadata must return true.

APPENDIX RAPCHAIN-AUDIT

Specification:

requires interfaceId == 0x5b5e139f;

ensures \result;

Properties related to function transferFrom

erc721-transferfrom-succeed-normal

All invocations of transferFrom(from, to, tokenId) must succeed if

address from is the owner of token tokenId , *it is not a self transfer,

the sender is approved to transfer token tokenId ,

transferring the token to the address to does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

requires from != address(0);

requires to != address(0);

requires from != to;

requires from == ownerOf(tokenId);

requires balanceOf(from) > 0;

requires balanceOf(to) < type(uint256).max;

requires (msg.sender == from)||(getApproved(tokenId) == msg.sender) ||

isApprovedForAll(from,msg.sender);

ensures true;

reverts_only_when false;

erc721common-transferfrom-correct-approval

All non-reverting invocations of transferFrom(from, to, tokenId) that return must remove any approval for token

tokenId .

Specification:

ensures getApproved(tokenId) == address(0);

erc721common-transferfrom-correct-balance

All non-reverting invocations of transferFrom(from, to, tokenId) must keep the sum of token balances constant.

Specification:

APPENDIX RAPCHAIN-AUDIT

requires from != address(0);

requires to != address(0);

requires balanceOf(from) > 0;

requires balanceOf(to) < type(uint256).max;

ensures (\old(balanceOf(from)) - balanceOf(from)) == (balanceOf(to) -

\old(balanceOf(to)));

erc721common-transferfrom-correct-increase

All invocations of transferFrom(from, to, tokenId) that succeed must subtract a token from the balance of address

from and add the token to the balance of address to .

Specification:

requires from != to;

requires balanceOf(from) > 0;

requires balanceOf(to) < type(uint256).max;

ensures (balanceOf(from) == \old(balanceOf(from)) - 1) && (balanceOf(to) ==

\old(balanceOf(to)) + 1);

 also

requires from == to;

requires ownerOf(tokenId) == from;

ensures balanceOf(from) == \old(balanceOf(from));

erc721common-transferfrom-correct-owner-to

All non-reverting invocations of transferFrom(from, to, tokenId) must transfer the ownership of token tokenId to the

address to .

Specification:

requires from != address(0);

requires to != address(0);

requires (msg.sender == from) || (getApproved(tokenId) == msg.sender) ||

isApprovedForAll(from,msg.sender);

ensures ownerOf(tokenId) == to;

erc721common-transferfrom-correct-state-approval

All non-reverting invocations of transferFrom(from, to, tokenId) must remove only approvals for token tokenId

Specification:

ensures (\forall uint id | id!=tokenId :: \old(getApproved(id))==getApproved(id));

erc721common-transferfrom-correct-state-balance

APPENDIX RAPCHAIN-AUDIT

All non-reverting invocations of transferFrom(from, to, tokenId) must only modify the balance of the addresses from

and to .

Specification:

ensures (\forall address adr | (adr!=from) && (adr!=to) :: \old(balanceOf(adr))==

balanceOf(adr));

erc721common-transferfrom-correct-state-owner

All non-reverting invocations of transferFrom(from, to, tokenId) must only modify the ownership of token tokenId .

Specification:

ensures (\forall uint id | id!=tokenId :: \old(ownerOf(id))==ownerOf(id));

erc721common-transferfrom-revert-exceed-approval

Any call of the form transferFrom(from, to, tokenId) must fail if the sender is neither the token owner nor an operator of

the token owner nor approved for token tokenId .

Specification:

reverts_when (msg.sender != from) && (getApproved(tokenId) != msg.sender) &&

!isApprovedForAll(from,msg.sender);

erc721common-transferfrom-revert-invalid

All calls of the form transferFrom(from, to, tokenId) must fail for any invalid token.

Specification:

reverts_when ownerOf(tokenId) == address(0);

erc721common-transferfrom-revert-not-owned

Any call of the form transferFrom(from, to, tokenId) must fail if address 'from' is not the owner of token tokenId .

Specification:

reverts_when ownerOf(tokenId) != from;

erc721common-transferfrom-revert-zero-argument

All calls of the form transferFrom(from, to, tokenId) must fail for transfers from or to the zero address.

Specification:

APPENDIX RAPCHAIN-AUDIT

reverts_when to == address(0);

also

reverts_when from == address(0);

APPENDIX RAPCHAIN-AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER RAPCHAIN-AUDIT

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER RAPCHAIN-AUDIT

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

RapChain-Audit Security Assessment CertiK Assessed on Jan 19th, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

